Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtre
Ajouter des filtres

Type de document
Gamme d'année
1.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.12.08.21267417

Résumé

The emergence of the SARS-CoV-2 Omicron variant, first identified in South Africa, may compromise the ability of vaccine and previous infection (1) elicited immunity to protect against new infection. Here we investigated whether Omicron escapes antibody neutralization elicited by the Pfizer BNT162b2 mRNA vaccine in people who were vaccinated only or vaccinated and previously infected. We also investigated whether the virus still requires binding to the ACE2 receptor to infect cells. We isolated and sequence confirmed live Omicron virus from an infected person in South Africa. We then compared neutralization of this virus relative to an ancestral SARS-CoV-2 strain with the D614G mutation. Neutralization was by blood plasma from South African BNT162b2 vaccinated individuals. We observed that Omicron still required the ACE2 receptor to infect but had extensive escape of Pfizer elicited neutralization. However, 5 out of 6 of the previously infected, Pfizer vaccinated individuals, all of them with high neutralization of D614G virus, showed residual neutralization at levels expected to confer protection from infection and severe disease (2). While vaccine effectiveness against Omicron is still to be determined, these data support the notion that high neutralization capacity elicited by a combination of infection and vaccination, and possibly by boosting, could maintain reasonable effectiveness against Omicron. If neutralization capacity is lower or wanes with time, protection against infection is likely to be low. However, protection against severe disease, requiring lower neutralization levels and involving T cell immunity, would likely be maintained.

2.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.10.08.21264519

Résumé

Background People living with HIV (PLWH) have been reported to have an increased risk of more severe Covid-19 disease outcome and an increased risk of death relative to HIV-uninfected individuals. Here we assessed the ability of the Johnson and Johnson Ad26.CoV2.S vaccine to elicit neutralizing antibodies to the Delta variant in PLWH relative to HIV-uninfected individuals. Methods We enrolled 26 PLWH and 73 HIV-uninfected participants from the SISONKE phase 3b open label South African clinical trial of the Ad26.CoV2.S vaccine in health care workers (HCW) in a prospective observational cohort study. Enrollment was a median 56 days (range 19-98 days) post-vaccination. HCW PLWH had well suppressed HIV viremia. As a comparison, we also enrolled unvaccinated participants previously infected with SARS-CoV-2. This group consisted of 34 PLWH and 28 HIV-uninfected individuals. We used the presence of SARS-CoV-2 nucleocapsid antibodies and any previous record of SARS-CoV-2 infection to differentiate the vaccinated participants into participants who were previously infected with SARS-CoV-2 and those not previously infected. Neutralization capacity was assessed using participant plasma in a live virus neutralization assay of the Delta SARS-CoV-2 variant currently dominating infections in South Africa. This study was approved by the Biomedical Research Ethics Committee at the University of KwaZulu-Natal (reference BREC/00001275/2020). Findings Unvaccinated PLWH showed 6-fold reduced neutralization of the Delta variant relative to HIV-uninfected participants (GMT=105 for HIV-uninfected, 15 for PLWH, p=0.001). The majority (68%) of Ad26.CoV2.S vaccinated HCW were found to be previously infected with SARS-CoV-2. In this group, Delta variant neutralization was 9-fold higher compared to the infected only group (GMT of 306 versus 36) and 26-fold higher relative to the vaccinated only group (GMT=12). There was no significant difference in Delta variant neutralization in vaccinated and previously SARS-CoV-2 infected PLWH relative to vaccinated and previously SARS-CoV-2 infected, HIV-uninfected participants (GMT of 300 for PLWH versus 307 for HIV-uninfected). Vaccinated only participants showed a low neutralization of the Delta variant, with a stronger response in PLWH (GMT=73, for PLWH, 6 for HIV-uninfected, p=0.02). Interpretation While PLWH showed reduced neutralization of the Delta variant following SARS-CoV-2 infection, the neutralization response following Ad26.CoV2.S vaccination was not inferior to HIV-uninfected study participants. Funding South African Medical Research Council, The Bill & Melinda Gates Foundation.


Sujets)
Infections à VIH , Syndrome respiratoire aigu sévère , COVID-19 , Virémie
3.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.14.21263564

Résumé

Characterizing SARS-CoV-2 evolution in specific geographies may help predict the properties of variants coming from these regions. We mapped neutralization of a SARS-CoV-2 strain that evolved over 6 months from the ancestral virus in a person with advanced HIV disease. Infection was before the emergence of the Beta variant first identified in South Africa, and the Delta variant. We compared early and late evolved virus to the ancestral, Beta, Alpha, and Delta viruses and tested against convalescent plasma from ancestral, Beta, and Delta infections. Early virus was similar to ancestral, whereas late virus was similar to Beta, exhibiting vaccine escape and, despite pre-dating Delta, strong escape of Delta-elicited neutralization. This example is consistent with the notion that variants arising in immune-compromised hosts, including those with advanced HIV disease, may evolve immune escape of vaccines and enhanced escape of Delta immunity, with implications for vaccine breakthrough and reinfections. HighlightsO_LIA prolonged ancestral SARS-CoV-2 infection pre-dating the emergence of Beta and Delta resulted in evolution of a Beta-like serological phenotype C_LIO_LISerological phenotype includes strong escape from Delta infection elicited immunity, intermediate escape from ancestral virus immunity, and weak escape from Beta immunity C_LIO_LIEvolved virus showed substantial but incomplete escape from antibodies elicited by BNT162b2 vaccination C_LI Graphical abstract O_FIG O_LINKSMALLFIG WIDTH=200 HEIGHT=110 SRC="FIGDIR/small/21263564v2_ufig1.gif" ALT="Figure 1"> View larger version (18K): org.highwire.dtl.DTLVardef@1194bfdorg.highwire.dtl.DTLVardef@1cbe318org.highwire.dtl.DTLVardef@aa74f8org.highwire.dtl.DTLVardef@e57969_HPS_FORMAT_FIGEXP M_FIG C_FIG


Sujets)
Hépatite D , Infections à VIH , COVID-19
4.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.06.01.446516

Résumé

Viruses increase the efficiency of close-range transmission between cells by manipulating cellular physiology and behavior, and SARS-CoV-2 uses cell fusion as one mechanism for cell-to-cell spread. Here we visualized infection using time-lapse microscopy of a human lung cell line and used live virus neutralization to determine the sensitivity of SARS-CoV-2 cell-to-cell spread to neutralizing antibodies. SARS-CoV-2 infection rapidly led to cell fusion, forming multinucleated cells with clustered nuclei which started to be detected at 6h post-infection. To compare sensitivity of cell-to-cell spread to neutralization, we infected either with cell-free virus or with single infected cells expressing on their surface the SARS-CoV-2 spike protein. We tested two variants of SARS-CoV-2: B.1.117 containing only the D614G substitution, and the escape variant B.1.351. We used the much smaller area of single infected cells relative to infection foci to exclude any input infected cells which did not lead to transmission. The monoclonal antibody and convalescent plasma we tested neutralized cell-free SARS-CoV-2, with the exception of B.1.351 virus, which was poorly neutralized with plasma from non-B.1.351 infections. In contrast, cell-to-cell spread of SARS-CoV-2 showed no sensitivity to monoclonal antibody or convalescent plasma neutralization. These observations suggest that, once cells are infected, SARS-CoV-2 may be more difficult to neutralize in cell types and anatomical compartments permissive for cell-to-cell spread.


Sujets)
COVID-19
5.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.01.26.21250224

Résumé

New SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen independently at multiple locations and may have functional significance. The combination of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y, K417N, and E484K mutations in the receptor binding domain (RBD) as well as mutations in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant could escape the neutralizing antibody response elicited by natural infection with earlier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa, designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing effect of convalescent plasma collected from six adults hospitalized with COVID-19 using a microneutralization assay with live (authentic) virus. Whole genome sequencing of the infecting virus of the plasma donors confirmed the absence of the spike mutations which characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and compared plasma neutralization to first wave virus which contained the D614G mutation but no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was strongly attenuated, with IC50 6 to 200-fold higher relative to first wave virus. The degree of attenuation varied between participants and included a knockout of neutralization activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody response elicited by prior natural infection. It raises a concern of potential reduced protection against re-infection and by vaccines designed to target the spike protein of earlier SARS-CoV-2 variants.


Sujets)
COVID-19
6.
medrxiv; 2020.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2020.11.23.20236828

Résumé

HIV infection alters the immune response and can compromise protective immunity to multiple pathogens following vaccination. We investigated the impact of HIV on the immune response to SARS-CoV-2 using longitudinal samples from 124 participants from KwaZulu-Natal, South Africa, an area of extremely high HIV prevalence. 44% of participants were people living with HIV (PLWH) and commonly had other co-morbidities, including obesity, hypertension, and diabetes. The majority of PLWH but not HIV negative participants showed CD8 T cell expansion above the normal range post-SARS-CoV-2. Yet, in participants with HIV suppressed by antiretroviral therapy (ART), CD8 expansion was associated with milder COVID-19 disease. There were multiple differences in T cell, B cell, and natural killer cell correlations in PLWH compared to HIV negative participants, including lower tissue homing CXCR3+ CD8 T cells in the presence of SARS-CoV-2 RNA in PLWH but not HIV negative and a pronounced early antibody secreting cell (ASC) expansion in HIV negative but not PLWH. These changes were COVID-19 associated: low CXCR3 correlated with increased COVID-19 disease severity across groups, and high ASC correlated with increased disease severity in HIV negative participants and waned when SARS-CoV-2 was cleared. Despite the altered response of immune cell subsets, COVID-19 disease in PLWH was mostly mild and similar to HIV negative participants. This likely reflects the heterogeneity of an effective COVID-19 immune response. Whether the differences in immune cell dynamics in PLWH will lead to different long-term consequences or compromise vaccination is yet to be determined.


Sujets)
Infections à VIH , Diabète , Obésité , Hypertension artérielle , COVID-19
SÉLECTION CITATIONS
Détails de la recherche